当前位置:首页 > 法律论文 > 正文内容

贝叶斯定理经典例题?

2024-04-11 21:04:55法律论文1

01 出租车问题

第一个被称为出租车问题,学术界对这个问题的研究已经超过30年。

某个夜晚,一辆出租车肇事后逃逸。该城市共有两家出租车公司,一家公司的出租车均为绿色(“绿色”公司),拥有出租车数量为全市出租车总数的85%;另一家公司的出租车均为蓝色(“蓝色”公司),拥有出租车数量为全市出租车总数的15%。一名目击者称肇事出租车是“蓝色”公司的。法院对目击者的证词进行了测试,发现目击者在出事当时那种情况下正确识别两种颜色的概率是80%。那么肇事出租车是蓝色的概率是多少(用百分数表示,范围从0%到100%)?

被试被告知不必精确计算答案,只需要给出一个大致的估计值。考察的关键点不在于答案的精确度,而在于人们的估计是否在一个大致正确的范围内。很遗憾,许多人的答案并不在这个范围内。

在出租车问题上,贝叶斯定理提供了一个最佳方法,即将给定的以下两条信息结合起来分析:

15%的出租车是蓝色。

目击者认为该出租车是蓝色的(识别准确率为80%)。

大多数人并不能自然地将两条信息综合考虑。事实上,很多人在知道了肇事出租车为蓝色的概率只有0.41后感到很震惊,因为他们没有意识到尽管目击者声称肇事车辆是蓝色的,但是肇事出租车仍更可能是绿色的(0.59),而非蓝色的(0.41)。原因是出租车是绿色的先验概率(85%)高于目击者识别出租车为蓝色的可信度(80%)。

如果不使用贝叶斯计算公式,我们来看一下0.41的概率是如何得到的:

在100起此类事故中,15辆出租车是蓝色的,而目击者能够正确辨认其中的80%(12辆);同样在这100起事故中,有85辆出租车是绿色的,而目击者会将其中的20%(17辆)辨认为蓝色。因此,将会有29(12+17)辆出租车被辨认为蓝色,而事实上只有12辆是蓝色的,所以肇事出租车是蓝色的概率为41%。

02 医疗风险评估

第二个例子与出租车问题的逻辑相同,但是更贴近日常生活,涉及医疗风险评估的问题,同样被许多研究所关注:

假设XYZ病毒能够引起严重的疾病,该病发病率为千分之一。假设有一种化验方法,可以精准地检测到该病毒。也就是说,如果一个人携带XYZ病毒,一定可以被检测出来。但是该项化验的假阳性率为5%,即健康人接受该项化验,会有5%的可能性被误诊为病毒携带者。假设从人群中随机选择一人进行检测,化验结果为阳性(阳性意味着受检者可能是XYZ病毒携带者)。那么,在不考虑具体症状、病史等情况下,此人携带XYZ病毒的概率是多少?(用百分数表示,范围从0到100%。)

最常见的答案是95%,而正确答案是约为2%!人们极大地高估了阳性结果代表个体为XYZ病毒携带者的概率,这与出租车问题一样,人们倾向于重视具体信息,而忽视基础概率信息。

尽管使用贝叶斯法则能够计算出正确答案,但是简单的数学推理也能帮助我们厘清基础概率对预估结果产生的巨大影响。我们已知的信息是:每1000人中只有1人是真正的XYZ病毒携带者。如果另外999位未携带病毒者全部接受化验,由于化验的假阳性率为5%,那么将有约50人的检测结果呈假阳性(0.05乘以999),因此有51人检测结果呈阳性,而实际上只有1人(约2%)为真的病毒携带者。

总之,由于XYZ病毒的基础感染率非常低,绝大多数人并未感染,再加上较高的化验假阳性率,因此可以推断大部分检查结果为阳性的人并非病毒携带者。

本网站文章仅供交流学习 ,不作为商用, 版权归属原作者,部分文章推送时未能及时与原作者取得联系,若来源标注错误或侵犯到您的权益烦请告知,我们将立即删除.

本文链接:http://www.sute006.com/post/109302.html